翻訳と辞書
Words near each other
・ Copelatus ferruginicollis
・ Copelatus ferus
・ Copelatus festae
・ Copelatus fidschiensis
・ Copelatus fijiensis
・ Copelatus filiformis
・ Copeland, Idaho
・ Copeland, Kansas
・ Copeland, New South Wales
・ Copeland, North Carolina
・ Copeland, Oklahoma
・ Copeland, Texas
・ Copeland, Virginia
・ Copelandia
・ Copelands Landing railway station
Copeland–Erdős constant
・ Copelatinae
・ Copelatus
・ Copelatus abonnenci
・ Copelatus acamas
・ Copelatus advena
・ Copelatus aemulus
・ Copelatus aequatorius
・ Copelatus aethiopicus
・ Copelatus agrias
・ Copelatus aldabricus
・ Copelatus alternatus
・ Copelatus amaroides
・ Copelatus amatolensis
・ Copelatus amazonicus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Copeland–Erdős constant : ウィキペディア英語版
Copeland–Erdős constant
The Copeland–Erdős constant is the concatenation of "0." with the base 10 representations of the prime numbers in order. Its value is approximately
:0.235711131719232931374143… .
The constant is irrational; this can be proven with Dirichlet's theorem on arithmetic progressions or Bertrand's postulate (Hardy and Wright, p. 113) or Ramare's theorem that every even integer is a sum of at most six primes. It also follows directly from its normality (see below).
By a similar argument, any constant created by concatenating "0." with all primes in an arithmetic progression ''dn'' + ''a'', where ''a'' is coprime to ''d'' and to 10, will be irrational. E.g. primes of the form 4''n'' + 1 or 8''n'' + 1. By Dirichlet's theorem, the arithmetic progression ''dn''·10''m'' + ''a'' contains primes for all ''m'', and those primes are also in ''cd'' + ''a'', so the concatenated primes contain arbitrarily long sequences of the digit zero.
In base 10, the constant is a normal number, a fact proven by Arthur Herbert Copeland and Paul Erdős in 1946 (hence the name of the constant).
The constant is given by
:\displaystyle \sum_^\infty p_n 10^ \rfloor \right)}
where ''pn'' is the ''n''th prime number.
Its continued fraction is (4, 4, 8, 16, 18, 5, 1, … ) ().
==Related constants==

In any given base ''b'' the number
: \displaystyle \sum_^\infty b^, \,
which can be written in base ''b'' as 0.0110101000101000101…''b''
where the ''n''th digit is 1 if ''n'' is prime, is irrational. (Hardy and Wright, p. 112).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Copeland–Erdős constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.